New insights into the pathogenesis and therapeutics of episodic ataxia type 1
نویسندگان
چکیده
Episodic ataxia type 1 (EA1) is a K(+) channelopathy characterized by a broad spectrum of symptoms. Generally, patients may experience constant myokymia and dramatic episodes of spastic contractions of the skeletal muscles of the head, arms, and legs with loss of both motor coordination and balance. During attacks additional symptoms may be reported such as vertigo, blurred vision, diplopia, nausea, headache, diaphoresis, clumsiness, stiffening of the body, dysarthric speech, and difficulty in breathing. These episodes may be precipitated by anxiety, emotional stress, fatigue, startle response or sudden postural changes. Epilepsy is overrepresented in EA1. The disease is inherited in an autosomal dominant manner, and genetic analysis of several families has led to the discovery of a number of point mutations in the voltage-dependent K(+) channel gene KCNA1 (Kv1.1), on chromosome 12p13. To date KCNA1 is the only gene known to be associated with EA1. Functional studies have shown that these mutations impair Kv1.1 channel function with variable effects on channel assembly, trafficking and biophysics. Despite the solid evidence obtained on the molecular mechanisms underlying EA1, how these cause dysfunctions within the central and peripheral nervous systems circuitries remains elusive. This review summarizes the main breakthrough findings in EA1, discusses the neurophysiological mechanisms underlying the disease, current therapies, future challenges and opens a window onto the role of Kv1.1 channels in central nervous system (CNS) and peripheral nervous system (PNS) functions.
منابع مشابه
Distinctive role of KV1.1 subunit in the biology and functions of low threshold K(+) channels with implications for neurological disease.
The diversity of pore-forming subunits of KV1 channels (KV1.1-KV1.8) affords their physiological versatility and predicts a range of functional impairments resulting from genetic aberrations. Curiously, identified so far human neurological conditions associated with dysfunctions of KV1 channels have been linked exclusively to mutations in the KCNA1 gene encoding for the KV1.1 subunit. The absen...
متن کاملMigraine and Episodic Ataxia Type 2: a Clinical, Genetic, Neurotologic, and Magnetic Resonance Spectroscopy Study
..................................................................................................................... 9 REVIEW OF THE LITERATURE .............................................................................. 10 1. CLINICAL CHARACTERISTICS OF MIGRAINE AND EPISODIC ATAXIA TYPE 2 ........................... 10 1.1. Migraine with and without aura .......................................
متن کاملPii: S0306-4522(98)00718-0
Episodic ataxia type 1 is a rare, autosomal dominant neurological disorder caused by missense mutations of the Kv1.1 gene from the Shaker K channel subfamily. To study the functional effects of the disease-causing mutations in a robust K channel background, we introduced seven different episodic ataxia type 1 substitutions into the corresponding, conserved residues of the Shaker K channel. K ch...
متن کاملNerve excitability studies characterize Kv1.1 fast potassium channel dysfunction in patients with episodic ataxia type 1.
Episodic ataxia type 1 is a neuronal channelopathy caused by mutations in the KCNA1 gene encoding the fast K(+) channel subunit K(v)1.1. Episodic ataxia type 1 presents with brief episodes of cerebellar dysfunction and persistent neuromyotonia and is associated with an increased incidence of epilepsy. In myelinated peripheral nerve, K(v)1.1 is highly expressed in the juxtaparanodal axon, where ...
متن کاملClinical, genetic, neurophysiological and functional study of new mutations in episodic ataxia type 1
BACKGROUND AND OBJECTIVE Heterozygous mutations in KCNA1 cause episodic ataxia type 1 (EA1), an ion channel disorder characterised by brief paroxysms of cerebellar dysfunction and persistent neuromyotonia. This paper describes four previously unreported families with EA1, with the aim of understanding the phenotypic spectrum associated with different mutations. METHODS 15 affected individuals...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2015